Tag: how-to

Internet of (sex) things – part 3: Node-RED

in the second part of this tutorial we have seen how to use the MQTT protocol to send data across the internet. In the third part we show how to add additional functionalities to our sex toys.

The series has 4 parts:

part 1: Exploring the internet of (sex) things

part 2: MQTT messages

part 3: Node-RED

part 4: Building a sex toy dashboard with Node-RED

We want to enable sex toys to communicate and  to connect to social media. Although there are a lot of solutions from the Internet of Things (IoT) community Node-RED is outstanding as you could connect devices without or with little knowledge of programming languages: “NodeRED is a visual tool for wiring together hardware devices, APIs and online services – for wiring the Internet of Things.”  (Wikipedia). There are standard building blocks (called nodes) which are categorized as input, output, function and social nodes. You can select nodes and wire them to create a flow. A typical flow would look like that: input node- function node- output node. If you want to know more you can should have a look at this very good tutorial: http://noderedguide.com/

In this part of the tutorial we will receive and display data from the sex toy. And we want to send control commands to the sex toy. This can be achieved with a few flows in Node-RED:

node-red-overview

Installation of Node-RED:

  1. First you have to install “node.js”. Follow the instructions here.
  2. Now follow the node-red installation instruction.
    For Windows: Press the Windows button. Type in “CMD”. Windows should suggest the command shell app. Now RIGHT-click on the command shell app and select “open as administrator”. In the new command shell window type in

    npm install -g --unsafe-perm node-red
  3. Change to the Node-RED directory and start Node-RED by the command “node red” or “node red.js”
  4. Go to your browser and open http://127.0.0.1:1880/

If you don’t want to make a local installation of Node-RED the online service FRED (https://fred.sensetecnic.com/) offers a good alternative. FRED comes with additional nodes with extra functionalities.

Let’s start with a first flow. We want to control the LED and the motor of our IoT sex toys. Therefore we need two nodes: The input node “INJECT” and the output node “MQTT”. Select both nodes and drag them into the flow window in the middle. Wire both nodes. Then open the Inject-node (just double-click the node). Change the  payload to type “string” and type in the command for switching the LED. This command is taken from the second part of the tutorial:

{messageType : "execute",  actuator : "LED",  actuatorValue : 1 }

In addition you have to enter the topic that will be used for the MQTT message. It is “BIinTopic” – the “in” refers to the sex toy. Select a name like “set LED on”:inject-mode-led-on

Then edit the MQTT node. The name of the MQTT server must be entered. Leave the Topic field empty and the MQTT node will use the topic from the predecessor node INJECT.

mqtt-out-message-to-biNow press the deploy button. You should see the message “successful deployed”.

Now you can press one of the INJECT node button (the button is on the left side of the node) and the LED of the sex toy should go on.controlbi2byrednode

You can use the JSON commands from part 2 of the tutorial and make an INJECT node for each command. With just 5 flows you can control all functions of the vibrator from everywhere. Instead of the INJECT node you could use an Email or Twitter node (instead of the INJECT node) to control the sex toy eg by Email.

There are no file open or save menus in Node-RED. Instead the visual flow can be imported and exported using a simple text file. If you want to import the flow above download and unzip this text file. Select Import -> from clipboard and copy the text from the file to the clipboard. If you want to save the flow, select Export -> from clipboard and copy the text of the clipboard in a new text file.

Now let’s receive messages from the vibrator and parse them. You need a MQTT input node, a JSON function node, a SWITCH node and two DEBUG output node.

We will show how to retrieve the status of the LED. When the LED is on the JSON file includes: “LEDstatus: 1”. Otherwise the JSON file includes: “LEDstatus: 0”.

Edit the MQTT input node and enter the URL of the Mosquitto server and the topic “BIoutTopic”.

mqtt-in

Then add a DEBUG node and select “complete msg”. Wire MQTT and DEBUG node. This node will display the MQTT message in the debug slider (on the rights side). This is only for debugging – you will see if the message from the vibrator comes in (or not).

Now add a JSON function node and connect the MQTT node with the JSON node. The JSON function node will parse the text string which was sent via MQTT and transforms it to a JSON object.

Now select a SWITCH node. As property enter “payload.LEDstatus”. The switch node branches the flow according to LED status which was reported in the JSON file. Now we can test, if the LEDstatus is 0 or 1. For each comparison a line will be added.json-switch-node

Finally make two DEBUG output nodes and wire them with the SWITCH node. Complete the “msg” by adding “payload.LEDstatus”. If the flow reaches the DEBUG nodes you will see a message in the debug slider on the right.

ouputnodeled

 

Now you are ready and can press the deploy button. It should look like that:

analyse-json

Again, the visual flow can be imported. If you want to import the flow above download and unzip this text file. Select Import -> from clipboard and copy the text from the file to the clipboard.

Let us test the flow. You have to set the LED on. Press the “turn on” button in your browser as explained in part 2.vibr iot controlnodemcu prototype breadboard

 

Now have a look at the “debug” slider where you should see the result of the action. The first entry is the JSON file which was received. It is displayed by the DEBUG node “message”. In the second entry the DEBUG node (wired with the SWITCH node) displays 1 which means the LED is on.debug-window-led-on

 

With Node-RED you can add a SQL database to store all data, you can connect to social media and especially you can connect MULTIPLE sex toys and let them interact. Read the excellent guides for parsing JSON files and MQTT:

http://noderedguide.com/index.php/2015/10/28/node-red-lecture-3-basic-nodes-and-flows/#h.5zaw60nvfsyj

What we have achieved: In part 1 we have developed a wifi-enabled sex toy prototype based on the ESP8266. The toy was controlled through a web browser on a local smart phone / laptop. Local refers to the access point. Both the local smart phone / laptop and the ESP8266 must have access to the same access point (eg your router at home.)

In part 2 we opened our connections to the internet. With the fast MQTT protocol we are able to send and receive messages from anywhere. For data transmission  we use the JSON file format. We have sketched a protocol for sending data, commands and messages between sex toys and users.

In this part we introduced Node-RED a visual programming tool for the Internet of Things. With this tool we are able to connect sex toys at different locations, to store sensor data and to get social.

In the fourth part of the tutorial we will introduce User Interfaces to create a sex toy dashboard.

Moving dildo with motor driven skeleton

skeleton-without-hull-servo-bi1So far we have used vibration motors for our sex toys. Vibration motors are cheap, powerful, easy to control and robust actuators. That’s why they are part of most sex toys. But what about moving or touching  objects. Obviously we need some mechanics, maybe joints and gears? Or is there a simple option? A skeleton?

I realized the idea for using some type of skeleton for moving a dildo when I saw the video of a naked Pleo – one of the best artificial life forms ever.

skeleton-hull-servo-body-interaction-board

On www.thingiverse.com you will find more inspiration for using a skeleton to move something. The design is very simple.

The skeleton is composed of a number of vortexes. The holes are for connecting all vortexes and a servo with a nylon wire or similar.

backbone_skeleton_24

In addition we need a handle where the vortexes are fastened to. There is also space for a servo. Then use a nylon wire to connect the vortexes with the servo. You can drive the servo with a Arduino development board or you use the body interaction development board as described here.

servo_handle_b

The servo should turn only 15-30 degree or so. If you use the body interaction development board please copy the following code and upload the code to the board.

#include <TinyServo.h>

// servo control with the body interaction development board using the TinyServo library
// -- adaption of the demo script by
// tylernt@gmail.com's ATTiny Hardware Timer Assisted Servo Library v1.0 20-Nov-13
// http://forum.arduino.cc/index.php?action=dlattach;topic=198337.0;attach=71790

const byte SERVOS = 1; // number of servos is 1
const byte servoPin[SERVOS] = { 7 }; // servo is connected to PA1 which is pin 7
#define SERVO 0 // our servo is given the name "SERVO"

void setup() {
 setupServos();
}

void loop() {
 moveServo(SERVO, 0); // move servo to 0°
 delay(1000);
 moveServo(SERVO, 30); // move servo to 30°
 delay(2000);
}

In addition we need a wrapping for the skeleton. This can be made using these two forms (download STL files).

nonmech

Use flexible silicone and poor it in the form. The thickness of the wrapping is a bit too large – it rather hinders the skeleton in its movements. But it works!

sceleton-hull

Now we can put everything together.

 

Download on Thingiverse: http://www.thingiverse.com/thing:1736282

 

Tinker with Tinkercad!
Form: https://tinkercad.com/things/e8yscABu9Al
Skeleton: https://tinkercad.com/things/dfbMQsE4Mtl
Servo handle: https://tinkercad.com/things/5EHHrqM5sqC

YouTube: https://youtu.be/F1b8bGbuSHw

New vibrator design “fusion”

 

fusion-quer-look-throughbodyinteraction designed a lot of vibrating toys, some are usable as massage devices, some are explicit sex toys (vibrator ring, balls), some are experimental (collar). Everyone is motion controlled. If you have more than one they will influence each other remotely, eg. a vibrator and a vibrator ring.

unboxing-3

But a device like a classic big vibrator is still missing. So we designed the “fusion” which is approx 19cm long and up to 4+cm in diameter. It is called fusion as the case is made of silicone and 3d printed material (ABS).

fusion-quer-2

We have put the body interaction vibrator development board, motor and battery in a silicone form. There is an on/off switch – so when you travel the vibrator doesn’t wake up when it is moved. And you can charge the battery with a USB micro connector. There is a spacious inlay for the electronics, so it will be easy to get it done.

Pros:

  • easy to charge the battery via USB
  • on/off switch
  • hard handle
  • flexible upper part
  • large (if you like this)
  • ISP interface (“hacker port”) accessible

Cons:

  • only the silicone part of the form can be put under water for cleaning

What do you need?

  • 200 ml silicone with high shore A rate, eg. shore A 45 from silikonfabrik.de
  • optional: special colour for silicone molding
  • 3d print of the molding form, inlay and closure
  • tinker wire
  • body interaction vibrator development board with LiPo and motor (or similar Arduino boards)
  • bin for preparing the silicone, something to stir the silicone

How much is it?

  • Board, battery, motor: 30$ (buy at Tindie)
  • Silicone: 10$
  • 3d Prints: less than 5$

Step by step instructions

Step 1: Print out the inlay, the form and the enclosure

round_something_05_final

Download as zip-file: Fusion

Download at Thingiverse: http://www.thingiverse.com/thing:1505539

Step 2: Prepare the inlay: Insert the body interaction board and the LiPo battery

The body interaction vibrator development board is inserted into the provided rails. It it doesn’t fit in use a file to remove printing artefacts. Use some glue to fix the board. Then insert the battery and fix it.

Important: The Micro USB connector must be above the upper part of the inlay.

inlay with description

Step 3: fix the wires of the vibration motor

The vibration motor will hang down from the inlay as the inlay will be put in the form upside down. You can influence the position of the motor by shortening the wire or fixing the wire to e.g. to the battery. In this case the wire of the motor was threaded between battery and board. Therefore the  motor will be in the middle of the vibrator.

inlay-inner-partfusion-looking-through-2in the center there is the overmolded vibration motor

Step 5: Prepare the form

Use some tinker wire to “press” both parts of the form tight together.molding-form-emptyUse some wax to fix little holes in the form where the printer failed. (These are the white spots)

drying-form-with-wax

Step 6: Insert inlay into the form

There must be some space between inlay and form for the silicone.

Remark: The two wedge like forms at both sides of the inlay help to hold the inlay. The wedge can be removed after molding.inlay-in-molding-form

Step 7: Cast the silicone

Prepare the silicone as the producer recommends. It takes some time to pour the large amount of silicone into the narrow form. The silicone we use must be used within 10 minutes. So start at once after preparing the silicone.

Important: The USB micro connector, the switch and the ISP connector shouldn’t be dashed with silicone. If this happens remove the silicone. Maybe some silicone will remain behind. This can be removed later when the silicone is solid.molded

The battery is covered with silicone, the USB connecor and switch are not.drying-seen-from-top

Step 8: Remove the form

Remove the tinker wire. Remove overhanging part of the silicone. Carefully tear both parts of the form away. You can use a knife, but be careful not to “hurt” the vibrator. Remove overhanging silicone at the vibrator. Also remove the two wedge like forms at both sides of the inlay.

unboxing-fusionfusion looking through complete

Step 9: Install the closure

Now you can put the closure on the inlay. Fix the closure with glue. (Be careful! The USB connector is not very strong.) closed-inlayround_something_055_final_cap_onlyfusion-closure

Tinker, share and download from Tinkercad:

form and inlay: https://tinkercad.com/things/b8nQxRn4XWl

closure: https://tinkercad.com/things/dhgtgeaYG0B

Download as zip-file: Fusion

Download at Thingiverse:

http://www.thingiverse.com/thing:1505539

 

USB powered charging station for the silicone molded vibrator

charging-station-in-action-with-body-interaction-vibrator-so-much-balls-smallWe made a DIY silicone molded vibrator (see here, here and here) using the Arduino compatible body interaction vibrator development board and a wireless charging module. Now we need a charging station where you can put your vibrator for battery charging.

We need a simple box for the wireless charging sender (transmitter) module and the coil. In addition we need a USB cable which we will cut though and connect to the charging module.

It is important to keep the distance between sender and receiver coil as small as possible. The larger the distance is the less power will be transmitted. Therefore the plate where you put the vibrator must be very thin. There are different modules available.

 

What do you need?

  • A USB cable
  • Wireless charging sender (transmitter) eg. from Seeed Studio, 5V input. The sender (transmitter) will be placed in the charging station. The receiver module will be part of the vibrator. There are different modules available. Look for a 5V input module.seeedwirelesscharging

Instructions:

A. Print out part A and B. Download STL files (zip file)

charging_station_02_final

 

B. Cut a USB cable. Plug the cable through the hole of form B.

C. Now connect the USB wires with the sender module. Solder the red wire to the (+) pad on the wireless charging sender. Solder the black wire to the (-) pad.

charging-cable-through-and-USB-cable-soldering-to-board

D. Glue the sender board on the bottom of the red form. Put some glue on the cable to fix it. We used hot glue.

charging-board-and-cable-glued

E. Now glue the black form and the sender coil together. We used simple “UHU”-like glue. If the distance between coil and form is too large the charging could be rather slow. So don’t use too much glue.

charging-coil-glued

F. Now put together both parts. Again we used a simple glue.

charging-station-complet-with-USB-cable

G. Insert the USB connector to your PC or any other source. Now the vibrator should be charged which is indicated by an orange LED.

charging-station-in-action-with-body-interaction-vibrator-so-much-ballsReady! Have fun with your collection of wireless DIY Arduino-compatible vibrators.

 

Download STL files (zip file)

All files at Thingiverse: http://www.thingiverse.com/thing:1488428

Tinker and share with Tinkercad:

Part A https://tinkercad.com/things/ijyPmLD1B9e

Part B https://tinkercad.com/things/emWnXUkiH1J

Silicone overmolded vibrator – balls revisited

molded-quermolded-with-ueberh-querBuilding your own silicone molded vibrator becomes now easier. We already have presented 3d printed forms for building your personal vibrator (massage wand, wireless charged vibrator). The vibrator uses the body interaction vibrator development board. The body interaction board has a Arduino compatible microcontroller, vibration strength control by motion, a vibration motor and a rechargeable battery.

 

balls_revisited_3_inlay_part_bWhat is new? The electronics including battery are in the base of the vibrator. We developed a 3d printed enclosure for the electronics. This has several benefits: The assembling of the electronics and the molding itself is easier as everything is fixed within the enclosure. And it is more safe as the enclosure shields the electronics from the environment (and vice versa). In addition we used a different charging module from Seeed Studio. The input voltage is only 5V. Now you can connect the charging module with a USB connector and don’t need another power supply. (Look here for an explanation of wireless charging sender and receiver.)

overmolded-vibration-motor

Another improvement is the placing of the vibration motor. The vibration motor can now be placed in the center of the vibrator and it different heights. Just were you need the power.

balls_revisited_3_inlay_part_aFinally the mounting is improved. The mounting holds the enclosure when it is inserted into the form.

balls_revisited_3_finalThe mounting (together with the enclosure with the electronics) is inserted into the form. The form consists of two parts which must be fastened together by tinker wire. It is a variation of the ball theme.

We present a step by step procedure for tinkering the vibrator. You need:

  • 3d printed form (molding form, 2 parts)
  • 3d printed enclosure
  • 3d printed mounting
  • body interaction vibrator development board
  • silicone with a high shore A value (eg. shore A 45 which is quiet hard but still flexible), approx. 100 ml
  • wireless charging module eg. from Seeed studio
  • soldering station, (hot) glue

Step by step procedure:

A. Print out all forms. You can download the forms from Thingiverse.

wireless-charging-sender-and-receiver-line-pf

B. Connect the wireless charging module to the body interaction vibrator development board.

B.1 You have to solder a wire connecting (-) on the wireless charging module and GND on the body interaction board.

B.2 Now comes the tricky part. You have to connect (+) from the charging module with the body interaction board. Solder a wire at (+) of the charging module. But where do you solder the wire on the body interaction board? Unfortunately the wireless charging option was not taken into consideration during the development of the board. So there is no appropriate connection on the board.

circuitThe best solution is to unsolder the USB connector and connect to + of the USB connection. The easiest way to unsolder the surface mounted USB connector is done with a hot air soldering station.  Alternatively you can solder the wire directly to the MAX1555 module – this solution is presented here. In any case: Be careful not to break the tiny pads connecting pcb and USB connector.

B.3 Connect the sender module with a 5V power supply. You can use a USB cable, dismantle the cable and connect the black and red wires.

inlay-with-coil

C. Place the receiver charging coil on top of the enclosure. The diameter of the top side is a bit larger than the diameter of the bottom side. Use some glue to fix the coil. Don’t fix the mounting now. It is easier to do it later (step E).

enclosure

D. Put the electronics into the enclosure: Begin with the body interaction board. The RFM12b is quite large so place it at an outer position. Then insert carefully the LiPo battery. Don’t force it! The plugs for the battery and the motor could break. If you have done so insert the tiny wireless charging receiver board. At the end fix the wires of the vibration motor in the middle of the enclosure.

E. Connect the mounting with the enclosure. There are 2 holes provided where the mounting fits into the enclosure. Use some glue to stick together both parts. (see picture above step C).

 

form-unfilled-with-inlay

F. Put together both parts of the molding form. Use tinkering wire to attach both parts tight together. Then insert the enclosure into the form. Check the wireless charging function. The yellow LED must be on when you place the charging coil over the receiver coil.

molded-form

G. Now poor silicone into the molding. We use Shore A 45 silicone which is rather hard. The silicone has to dry for some hours or days. Read the instructions of your silicone provider.

opening-form

H. When the silicone is hard, you can remove the tinkering wire. Then carefully remove the form.

form-removedform-molded-top-down

I. Remove the overhang.

wireless-chargin-test

J. Test the wireless charging. The orange LED must be on when both coils are near together.

molded-bottom IMG_20160303_184830

K. Remove the mounting.

 

Design your own forms using Tinkercad. Start now and share!

Old versions of the enclosure:Enclosure & mounting togther, Enclosure , Mounting

Download the STL files for 3d printing from Thingiverse.

Update 2016/03/12: Added image of circuits showing where to solder the wireless charging module.

Update 2016/04/05 redesign of mounting and enclosure due to different versions of the wireless charging receiver coil

Programming the body interaction 1 (BI) part 2

Reading the accelerometer data

The BI has built in the accelerometer Bosch BMA020. The BMA020 is a 3-axis accelerometer and reads acceleration data in X, Y and Z direction. The accelerometer is used to control the operation of the BI. It captures changes in movement eg. slowing, speed up, change of direction. Steady movement can not be captured. Nevertheless it is possible to calculate the orientation of the BI eg. upright or downright.

To read out the data we use the JeeLib – a great library we will use to control other devices and read out sensors (read here how to install). The library must be included, add:

#include <JeeLib.h>

In JeeLib the accelerometer is called GravityPlug. It is not connected to a pin directly (as the vibration motor). Instead it is connected to the I2C bus, but at this point ignore the details. Just add:

PortI2C myBus (1);
GravityPlug sensor (myBus);

Now we can read out the accelerometer using the name “sensor”.

Now we want to read out the sensor. This is done by adding “.getAxes()” to “sensor”. But before we declare a new variable called p, where we the acceleration in X-, Y- and Z-axis is stored:

const int* p = sensor.getAxes();

The acceleration in x-direction is stored in p[0], y-direction in p[1] and z-direction in p[2].

p[0], p[1] and p[2] are integers. When there is no acceleration (eg. the BI is not moved) the value would be approx 0. If you move it horizontally to the right it will return positive values. If you move it horizontal to the left it will return negative values. (Could be vice versa, it depends on the orientation of the accelerometer).

We introduce 3 new variables x, y and z for storing the values:

int x,y,z;

As we are not interested in the direction of the acceleration we convert negative values to positives. This is known as the absolute value and is computed with the function abs(), see: https://www.arduino.cc/en/Reference/Abs

x = abs(p[0]); 
y = abs(p[1]); 
z = abs(p[2]);

We also introduce a further variable called “threshold”. Only values above a given threshold will change the behaviour of the vibration motor. This is useful to ignore the gravity which influences at least of the axises.

int threshold = 250;

Now we put everything together. The script should start the vibration motor if there is acceleration either in x, y or z direction above a threshold. Otherwise the motor is off.

#include JeeLib.h;
PortI2C myBus (1);
GravityPlug sensor (myBus);

int motor = 3;
int threshold = 100;
int x, y, z;

void setup() {
 pinMode(motor, OUTPUT);
}

void loop() {
  const int* p = sensor.getAxes();
  x = abs(p[0]);
  y = abs(p[1]);
  z = abs(p[2]);
  analogWrite(motor, 0); //motor off
  if (x &amp;gt; threshold || y &amp;gt; threshold || z &amp;gt; threshold) {
    analogWrite(motor, 255); //motor on
 }
 delay(2000);  // wait for 2 second
}

Let’s take a further look at the loop. Every time when the instruction in the loop are executed, the sensor will be read out. The absolute values are stored in x, y and z by using the abs() function. Then the motor is set off.

The following statement

analogWrite(motor, 255);

will turn the motor on if the following condition is true:

(x > threshold || y > threshold || z > threshold)

The condition is true when either x > threshold or y > threshold or z > threshold. You can read “||” as logical or. Read more about the if function and boolean operators (or, and, not).

Finally a delay functions stops further processing for 2 seconds. Then the loop will be executed again, starting to read out the accelerometer values.

In depth example of reading the BMA020:

http://playground.arduino.cc/Main/SoftwareI2CLibrary

Jeelib GravityPlug  – how to read out the BMA020 with the JeeLib library.

http://jeelabs.org/2010/03/22/gravity-plug/

More about Acceleration and Gyros and how to calculate the orientation:

http://www.instructables.com/id/Accelerometer-Gyro-Tutorial/

 

Copy the source code (script) into an Arduino window. Then click compile . If everything is ok you get the message done compiling. sucessful compiling

Then upload the code to the body interaction 1. If everything is ok you get the message done uploading. You can ignore the warnings. done uploadingBut if you don’t get the done uploading message something went wrong. in this case read the following post:

https://bodyinteraction.com/2016/01/08/get-started-with-arduino-1-6-7-and-windows-10/

Go to the next tutorial (part 3): ramps

Programming the body interaction 1 (BI) – part 1

Controlling the vibration motor

The vibration motor is an analog device. You can control the vibration on a scale between 0 and 255. If you set the vibration to 0 the motor is off, if you set the vibration to 255 the motor will be at full speed.

Good vibrations Tokyo by Kevin Dooley, CC BY 2.0

Good vibrations Tokyo by Kevin Dooley, CC BY 2.0

The motor is connected to a pin of the controller (“ATtiny84”), the heart of the BI. Every pin has a number and the motor is always connected to pin 3.

on off chartNow we can start with the first script (or program). The script will set the motor to full speed for one second. Then the motor will be off for 1 second. And this will be repeated infinite.

 

 

 

 

Here is the complete script:

int motor=3;
void setup() {
  pinMode(motor, OUTPUT);
}

void loop() {
  analogWrite(motor, 255); //motor on
  delay(1000);  // wait for 1 second
  analogWrite(motor, 0); //motor off
  delay(1000);
}

Now the script is explained line by line:

int motor=3;

First we declare a variable called “motor” and assign the value 3. The variable is of type int (integer) which is used to store a number. Now we could use “motor” instead of “3” whenever we want to control the vibration motor – this will help us to understand and debug our script.

void setup() {
  …
}

This is function which is part of every Arduino script. It is called setup and well be executed at first and only once.

pinMode(motor, OUTPUT);

Each pin can be in INPUT or OUTPUT mode. In input mode sensor data can read, in output mode a motor or a LED can be controlled. We set the motor pin to OUTPUT.

void loop() {
  …
}

In the function loop we put all the instructions which should be carried out. When all instructions are done the script doesn’t stop but starts again. Therefore the loop will be repeated infinite.

analogWrite(motor, 255);

The motor is set to full speed (255).

delay(1000);

The delay function stops all processing for 1000 milliseconds. 1000 millisecond are 1 second.

analogWrite(motor, 0);

Then motor is set off (0). In the second part of the tutorial uploading of the script to the body interaction 1 is explained.

More:

https://www.arduino.cc/en/Tutorial/Foundations

Read part 2: the accelerometer

%d bloggers like this: