Category: material

BI2 – building a silicone sex toy

Now let’s build the first ESP8266 vibrator. I use the reliable design from this blog post and the new BI2 board. The new BI2 board can be controlled from any smart phone or computer.

As the BI2 board is round there is no need to build a case for the PCB and the LiPo. The easist way is to glue the battery directly on the ESP8266. Connect the battery and one or more vibration motors with the BI2 board.

 

The form consists of two parts which are fastened together with tinker wire. Before you have to insert the board with the vibration motor(s) and the battery. Therefore I used a handle. The handle could be put on top of the form. Then fix a USB connector to the handle. Plug in the BI2 board. Fasten the second half of the form.

Very important: The USB micro connector on the board must be protected from the silicone. When silicone flow between USB plug and connector it will be impossible to pull out the plug. I use wax to seal the USB micro connector. Read more here.

 

Now pour in the silicone, wait for some hours. And open softely the form.

 

Remove the overhanging silicone.

Here ist the Link to Tinkercad where you can edit the form and download STL files for your 3D printer: Download from Tinkercad: formhandle. Download ready to print zipped STL files.

Now build YOUR personal sex toy. Here you find the code for the ESP8266 as well as an IOT server application for quantifying your sex and remote control.

Basic Node for the Internet of Sex Toys – part 2: 3d printed form, assembly, molding

In this series of posts we describe how-to make a vibrating sex toy which is part of the Internet of Things.

part 1: Basic Node for the Internet of Sex Toys

part 2: Molding the Basic Node

part 3: Software for the Basic Node

In part 2 we describe how-to make a mold form for the basic node. We need three forms:

  • the mold form which consists of two parts
  • the inlay which protects the electronics of the basic node
  • a “hanging” for the inlay

 

 

 

We used Tinkercad to construct the parts. The molding form is based on Tinkercad’s banana form. You can edit and share them from your browser:

Inlay: https://tinkercad.com/things/h5fFOBqlmjw

Hanging: https://tinkercad.com/things/jUxc2oAamww

Form: https://tinkercad.com/things/6HS3XScOsCM

Instructions

Print out all forms. The STL files are available at Thingiverse. You might want to use XTC or similar for smoothing the inner part of the mold form.

Assembling the Inlay

We use the inlay to protect the electronics.

Simply put the electronics inside so that the upper body of the switch is on the same level as the upper inlay. We use hot glue to fix the basic node.

Then fix the receiver coil of the wireless charging module on top of the inlay. The next step is to fix the hanging at the inlay.

Now fix the LiPo battery on the bottom side of the inlay using hot glue or similar. Fix the wires. Finally you might fix the wires of the vibration motor next to the middle of the LiPo battery.

Use tinkering wire to fix both parts of the molding form.

Put the inlay in the form. Fix the hanging with a tape or similar. The motors shouldn’t touch the inner part of the form.

Now prepare the silicone. We use Shore A 45 silicone (approx. 250 ml) from Silikonfabrik.de. It is hard but still a bit flexible. You may add color, too. You have about 10 minutes to stir the silicone and poor it in the form.

After some hours you can remove the form. As you can see there is overhang which make removing the form very hard. The form could break when removing. Better preparation of the form (eg rasping) could improve the results.

If the blue LED of the Wemos board is still active you were successful.

Now you need a charging station. The construction is shown here. It is also possible to connect the sender (or transmitter) module with a 5V power source (eg. from the USB port). Just put the bottom of the molded basic node on the sender coil.

 

In the next part we introduce an updated version of the software including over the air update and WiFi management.

Smooth 3d printed vibrator form for silicone molding

shinybluemoreorlesscompleteWe started with printing sex toys (see here, here and here), then moved to printing mold forms for sex toys and finally we made sex toys which are partially silicone molded and partially printed. The best results were achieved with printing mold forms and fill them with silicone. But even there we have the problem that the surface isn’t really smooth and that it is hard to clean.

 

xtcTo overcome this problem we use a 3d print smoothing (XTC 3D) to smooth the surface. Application is very easy. It is like applying a transparent varnish. The results are impressive: The silicone gets a smooth shiny surface.

Shiny blue vibrator with vibration motor and air bubble in silicone formBut you can still see printer artefacts. To overcome this issue you could apply a thicker layer of XTC-3D. If you use a better printer than my daVinci 1.0 the “staircase effect” shouldn’t be a  problem at all. Another problem are tiny – sometimes quite large – air bubbles. To remove this air bubbles you need a vacuum chamber. So it is still not perfect, but it works and looks quite good…shinybluecomplete

%d bloggers like this: