Category: programming

Controlling two BI2 with Blynk

Controlling more than one body interaction 2 boards is very easy.

At first go to project settings in the Blynk app, go to devices and add a new device.

Then create a new device and press Email. You will get an Email with the auth token.

Add slider widget for the motor and another ZEGBRA widget for controlling the LED. For LED select a new virtual pin, e.g. V10.

You can start with this ready made app:

It should look like this:

 

Then reuse  the code from this blog post.

Change the following:

  • fill-in the auth token which you got per Email
  • change the name of the virtual pin V0 (for the LED) to e.g. V10 (the same name as in the Blynk app)

 

That’s it!

 

Sending motion data to the Blynk app (part 2 of the Blynk tutorial)

In the first blog post we explained the basics of controlling the body interaction 2 (BI2) vibrator development board using the concept of  (virtual) pins. This time we want to send data from the BI2 board to the Blynk app. The BI2 has the MPU-9250 9DoF (9 Degrees of Freedom) IMU (Inertial Measurement Unit) sensor on board. This sensor is a combination of an accelerometer, gyroscope and magnetometer. Especially the accelerometer is important for motion detection. This could be used for controlling the vibrator as show with the body interaction 1 (BI1).

For measuring the motion data we use the asukiaa library. Please search and install the library in the Arduino library manager.

In the program code the library must be included and a MPU9250 sensor object must be defined. Finally we need several variables of the type float.

#include <MPU9250_asukiaaa.h>
MPU9250 mySensor;
float aX, aY, aZ, mDirection, pitch, roll, yaw;

In the setup part of the program we need to tell the MPU9250 how it is connected to the ESP8266 microcontroller. [The MPU9250 IMU is connected by the I2C bus to the ESP8266 microcontroller: the sda pin of the IMU is connected to pin 4, the scl pin to pin 5. The connection between MPU9250 and ESP8266 is managed with the standard Wire library.]

For using the accelerometer and magnetometer we have to initialize the sensor with a begiAccel() call to the IMU library.

Wire.begin(4, 5); //sda, scl
mySensor.setWire(&Wire);
mySensor.beginAccel();
mySensor.beginMag();

We have to tell the program how often data is sent to the app. Therefore we need an important concept in microcontroller programming:

Timer

With the help of the timer we can tell the microcontroller to do a given tasks again and again e.g. after 1000 microsecond. You cannot use the delay function to pass time as this would interrupt the important call to the Blynk.run(); function which is located in the loop part of the program.

First we have to define an object of type Timer.

BlynkTimer timer;

In the setup part we have to say how often what the timer has to do. in this example the timer will call the function myTimerEvent every 1000 microsecond.

timer.setInterval(1000L, myTimerEvent);

In the loop part of the program we have to call the timer to keep things going:

timer.run(); // Initiates BlynkTimer

Now we need the function myTimerEvent what has to be done every 1000 seconds.

void myTimerEvent()
{
  // here add was has to be done
}

First we have to update the sensors (accelUpdate, magUpdate). Then we read out the acceleration data in the X, Y and direction. You can already use this data but they are hard to catch. Therefore we can calculate the pitch, roll and yaw. These are angles from -180° to +180°. The calculation is complicated and I don’t understand it. But with the given formulas you get a very rough approximation which makes the data quite accessible.

void myTimerEvent() {
  mySensor.accelUpdate();
  aX = mySensor.accelX();
  aY = mySensor.accelY();
  aZ = mySensor.accelZ();

  // calculate pitch, roll, yaw (raw approximation)
  float pitch = 180 * atan (aX/sqrt(aY*aY + aZ*aZ))/M_PI;
  float roll = 180 * atan (aY/sqrt(aX*aX + aZ*aZ))/M_PI;
  float yaw = 180 * atan (aZ/sqrt(aX*aX + aZ*aZ))/M_PI;

  // read gyroscope update
  mySensor.magUpdate();
  mDirection = mySensor.magHorizDirection();
}

Finally we send the data back to the Blynk app. Now we use the virtual pins. For the variables pitch we  use virtual pin 2 (V2), for roll V3, for yaw V4 and for mDirection V5. We have to add the following line to the myTimerEvent function.

void myTimerEvent() {
  // send data to app via virtual ports, e.g. virtual pin V2 is set to pitch
  Blynk.virtualWrite(V2, pitch);
  Blynk.virtualWrite(V3, roll);
  Blynk.virtualWrite(V4, yaw);
  Blynk.virtualWrite(V5, mDirection);
}

Now the data are continously sent to the Blynk app. To visualize the data we add the widget SuperChart.

For each variable we have to define the input (virtual) pin. For pitch we use the virtual pin V2. In addition we define the color and style of the graph and more.

 

Finally the super graph shows us the date from the accelerometer which are updated every second.

First part of the tutorial (setup Arduino, setup Blynk, LED and motor control) is here

Here is the complete code:

 

/*************************************************************
bodyinteraction.org
sample program for reading MPU data, setting LED color and motor speed
*/
#define BLYNK_PRINT Serial
// include this library in the Arduino library manager
#include "FastLED.h"

// How many leds in your strip?
#define NUM_LEDS 1
// LED data pin is connected to pin?
#define DATA_PIN 14

// Define the array of leds
CRGB leds[NUM_LEDS];
int wave;

// include this library in the Arduino library manager
#include <MPU9250_asukiaaa.h>
MPU9250 mySensor;
float aX, aY, aZ, mDirection, pitch, roll, yaw;

#include <ESP8266WiFi.h>
#include <BlynkSimpleEsp8266.h>

// You should get Auth Token in the Blynk App.
// Go to the Project Settings (nut icon).
char auth[] = "Your Auth Token XXXXXXXXXX";

// Your WiFi credentials.
char ssid[] = "YOUR SSID   XXXXXXXXXXXXXX";
char pass[] = "YOUR Password XXXXXXXXXXXX";
BlynkTimer timer;

void myTimerEvent()
{
  // read acceleration data
  mySensor.accelUpdate();
  aX = mySensor.accelX();
  aY = mySensor.accelY();
  aZ = mySensor.accelZ();
  // read gyroscope update
  mySensor.magUpdate();
  mDirection = mySensor.magHorizDirection();
  // calculate pitch, roll, yaw (raw approximation)
  float pitch = 180 * atan (aX/sqrt(aY*aY + aZ*aZ))/M_PI;
  float roll = 180 * atan (aY/sqrt(aX*aX + aZ*aZ))/M_PI;
  float yaw = 180 * atan (aZ/sqrt(aX*aX + aZ*aZ))/M_PI;
  // send data to app via virtual ports, e.g. virtual pin V2 is set to pitch
  Blynk.virtualWrite(V2, pitch);
  Blynk.virtualWrite(V3, roll);
  Blynk.virtualWrite(V4, yaw);
  Blynk.virtualWrite(V5, mDirection);
}

BLYNK_WRITE(V0) // set RGB color values which are transmitted from the app as V0 (virtual pin 0)
{ 
  int i = param[0].asInt();
  int j = param[1].asInt();
  int k = param[2].asInt();
  leds[0].setRGB(j,i,k);
  FastLED.show();
}

void setup()
{
  Serial.begin(115200);
  FastLED.addLeds<WS2812B, DATA_PIN, RGB>(leds, NUM_LEDS);

  Wire.begin(4, 5); //sda, scl
  mySensor.setWire(&Wire);
  mySensor.beginAccel();
  mySensor.beginMag();

  Blynk.begin(auth, ssid, pass);
  timer.setInterval(1000L, myTimerEvent);
}

void loop()
{
  Blynk.run();
  timer.run(); // Initiates BlynkTimer
}

 

Please feel free to comment or write to jacardano@gmail.com

Programming the body interaction 2 (BI2) with Blynk part 1

This in an intro to using and programming the BI2 with the Blnyk app. Read here how to set up Arduino. For a more general basic intro (based on the body interaction 1 board) read here.

Pins

The communication between app and BI2 microcontroller is realized by pins. The idea is very easy: Each widget in the Blynk app is connected to a physical pin of the microcontroller. Every microcontroller has several pins where you can connect other electronic parts like a LED or a vibration motor. For each pin you have to configure if it is a output or input pin. Output pins are for controlling actuators, like LED, motor or display. Input pins are connected to sensors, like buttons, temperature sensors, acceleration sensor.  In addition each pin can be digital, analog or virtual.

Digital output pins can only set the actuator to on or off e.g. turning the LED on or off. Analog pins can set the actuator to a specific value in a given range. Usual this in done in the range [0..255] or [0..1023]. For a motor 0 will set the motor off, 50 may be make the motor move very slowly and 255 will be full speed. An analog output pin is sometimes called PWM. (PWM is a method to simulate an analog signal with a sequence of digital on/off signals.)

Digital input pins can read the position of a button (on/off). Analog input pins can read a value in a given range, e.g. the acceleration in the X-axis or the temperature.

So what you have to do to connect a widget to a pin? Just set the widget (e.g. on/off switch widget) to the pin you want to set on/off (e.g. a pin which is connected to a LED). That’s all. No programming required. All you need is this small program which must be uploaded to the microcontroller with the Arduino IDE.

The body interaction 2 use the ESP8266 microcontroller. There are 16 pins, all could be used as digital or analog, input or output. But only pin 12 and 13 are free to use (the rest if for internal communication). Pin 14 is connected to the LED WS2821B.

The Arduino sketch

The first 3 lines are for configuring Blynk and using two libraries. The 3 variables auth, ssid and pass are defined. (The variables are from thy type char (=character) and in this case it is not only one character but an array which you can see by the “[” and “]”. Here you have to add your AUTH token from the Blynk app, and SSID and password from your local WLAN/WIFI.

#define BLYNK_PRINT Serial 
#include <ESP8266WiFi.h> 
#include <BlynkSimpleEsp8266.h> 

char auth[] = "XXXXXXXXXXXXXXXXXXXXXXXXXXX"; 
char ssid[] = "XXXXXXXX"; 
char pass[] = "XXXXXXXX";

Each Arduino program consists of a setup and a loop procedure. The setup is called only one time when the microcontroller is started (or connected to a battery). It is used to initialize the microcontroller, in this case Blynk is started. The loop will be called indefinitely and all statements are executed in the given order. To get Blynk running you have to call Blynk again and again (“Blynk.run();”). According to the Blynk manual, you should not add a delay() function here, because this could disturb the communication between the app and the microcontroller.

void setup() { 
  Blynk.begin(auth, ssid, pass); 
} 

void loop() { 
  Blynk.run(); 
}

Virtual pins

So far communication is only possible with physical pins. But how can you exchange other information? Maybe you want to tell the microcontroller to “shut up immediately”,  or you want to play a given vibration pattern like a sinus curve. For this you can use “virtual pins”. (IMHO there is no reason to call this mean of data exchange “virtual” and it is has nothing to do with a pin. You can call it a variable or channel for data exchange.) The zeRGBa widget is a good example. The color of the LED is controlled by 3 values, the amount of red, green and blue color. This 3 values can be connected to one virtual pin (“V0”) and then they will be transmitted to the microcontroller. To change the color of the LED you have to program the microcontroller  to read out the amount of each color and set the LED to the appropriate value.

We will demonstrate virtual pins with the LED. The WS2821B LED is connected to pin 14, but you cannot control the LED directly by setting the pin to a given value. This is done by a library which controls the LED.

First we have to include the library, we use FastLED.

#include "FastLED.h"

Then  we have to tell how many LEDs we have (you can put several of them in a chain). The BI2 has only one on board (but you can add more).

#define NUM_LEDS 1 // number of LEDs

The you have to tell to which physical pin the LED is connected (14). Finally you have to set up a (instance of an) object “CRGB” for the LED where all relevant data is hidden.

#define DATA_PIN 14 // pin for LED 
CRGB leds[NUM_LEDS]; // define the array of leds

Now comes the more difficult part. The zeRGBa widget has 3 values (one for red, one for green, one for blue) and all are put in the virtual variable V0.

We have add a new function called “BLYNK_WRITE(V0)”. To get the first value we have to read out “param[0]”, for the second “param[1]” etc. We want to store this first value in a variable “i” of the type integer. To assure that param[0] is also from the type integer we add “.asInt()”. The value for red is put in variable i, green in j and blue in k.

BLYNK_WRITE(V0) {
  int i = param[0].asInt();
  int j = param[1].asInt(); 
  int k = param[2].asInt();
}

Now we have to tell the function BLYNK_WRITE what to do with the values i, j an k. This is done by using the method setRGB which is attached to the LED (which is number 0)

leds[0].setRGB(j,i,k);

Now we can make changes to other LEDs (if we have more than one). If you are ready you have to tell the LED to show the new color.

FastLED.show();

In addition a new statement has to be added to setup the LED within the setup part.

void setup() { 
  FastLED.addLeds<WS2812B, DATA_PIN, RGB>(leds, NUM_LEDS);
  [...]

Now we can put everything together the script will look like this:

/*************************************************************
Controling the body interaction 2 board with the Blynk app
*/

#define BLYNK_PRINT Serial
#include <ESP8266WiFi.h>
#include <BlynkSimpleEsp8266.h>

// Auth Token infor the Blynk App.
char auth[] = "XXXXXXXXXXXXXXXXXXXXXXXXXXX";

// Your WiFi credentials.
char ssid[] = "XXXXXXXX";
char pass[] = "XXXXXXXX";

// Library for controlling the WS2821B (Neopixel) LED or LED strip
#include "FastLED.h"
#define NUM_LEDS 1 // number of LEDs
#define DATA_PIN 14 // pin for LED
CRGB leds[NUM_LEDS]; // define the array of leds

// This function set the LED color according to the selected RGB values in the app.
// RGB values are controlled in the app with zeRGBa widget
// values are stored in the virtual pin V0
// V0 consists of 3 values for Red, Green, Blue
BLYNK_WRITE(V0) // set LED RGB color values
{
  int i = param[0].asInt();
  int j = param[1].asInt();
  int k = param[2].asInt();
  leds[0].setRGB(j,i,k);
  FastLED.show();
}

void setup()
{
  // init LEDs
  FastLED.addLeds<WS2812B, DATA_PIN, RGB>(leds, NUM_LEDS);

  // connect to Blynk
  Blynk.begin(auth, ssid, pass);
}

void loop()
{
  Blynk.run();
}

Do you like this, do you need this, do you understand this? Tell me jacardano@gmail.com

Blynk: Controlling BI2 from the smartphone

Readers ask me for an easy way to control the body interaction vibrator development board. Without or with limited  programming knowledge, without complicated Internet of thing technology, like the visual programming tool NODERED or the MQTT protocol and server.

That’s what Blynk is for. Started in 2016 as a kickstarter  campaign, they have built a tool which hides a lot of the complexity of the Internet of Things. Blynk consists of the following parts:

Blynk app. With this app you can build a User Interface in just a few minutes. You have all the usual elements like switches, slider,  graphs and much more for controlling IOT devices.

Blynk Server / Cloud is responsible for the communications between the smart phone and IOT devices. There is nothing to do, everything works in the background

IOT devices library: So far everything is very simple. But at the end you have to program your IOT device – the body interaction 2 board for example. They support a great number of boards. For this they created the blynk  library – with the library you need only some lines of code which must be uploaded to the board. Even when you change the user interface the code can stay the same. At least for simple changes. They offer a code generator where you code for your board and use case is generated automatically.

You find a lot of information in the Internet about the pros and cons. In short: It is easy compared to other tools, but if you want to implement your own algorithms programming knowledge is needed. Blynk limits the number of free User Interface elements. If you need more you have to pay  a small fee.

 

Here is short tutorial to run you BI2 with Blynk. (takes 30 minutes)

Download the Blynk app (Android or iPhone).

Within the Blynk app: Register for Blynk and get AUTHenitfication code.

Upload Arduino

You can download Arduino from the Arduino Website or from the Microsoft Store (Windows only)

 

Add or update the following libraries with the library manager: FastLED and Blynk.

Select Include libraries -> library manager

Search for FastLED and install this library (press install button).

Now search for “Blynk” and install the Blynk software. However Blynk suggests to install the Blynk app manually.

 

Add board definition for the ESP8266

Select Tools -> Board -> Board management

Search for ESP and install “esp8266”

Select Board -> Adafruit Feather

Build a connection between BI2 and your computer.

First download the USB driver from here and install the driver. Connect the BI2 with your computer. After some while windows will notice a new device. Windows will communicate with the board over a COM port (e.g. COM3). If you have any problemes check your USB wire. It must support all lines, not only + and – for charging.

Now go back to Arduino and select Tools -> Port. Select the new COM portcom port arduino

Compile and upload the code to BI2 board

Now copy and paste the following code in a Arduino sketch (use File -> new). Then press the Upload button.

/*************************************************************
Controling the body interaction 2 board with the Blynk app
*/

#define BLYNK_PRINT Serial
#include <ESP8266WiFi.h>
#include <BlynkSimpleEsp8266.h>

// Auth Token infor the Blynk App.
char auth[] = "XXXXXXXXXXXXXXXXXXXXXXXXXXX";

// Your WiFi credentials.
char ssid[] = "XXXXXXXX";
char pass[] = "XXXXXXXX";

// Library for controlling the WS2821B (Neopixel) LED or LED strip
#include "FastLED.h"
#define NUM_LEDS 1 // number of LEDs
#define DATA_PIN 14 // pin for LED
CRGB leds[NUM_LEDS]; // define the array of leds

// This function set the LED color according to the selected RGB values in the app.
// RGB values are controlled in the app with zeRGBa widget
// values are stored in the virtual pin V0
// V0 consists of 3 values for Red, Green, Blue
BLYNK_WRITE(V0) // set LED RGB color values
{
  int i = param[0].asInt();
  int j = param[1].asInt();
  int k = param[2].asInt();
  leds[0].setRGB(j,i,k);
  FastLED.show();
}

void setup()
{
  // init LEDs
  FastLED.addLeds<WS2812B, DATA_PIN, RGB>(leds, NUM_LEDS);

  // connect to Blynk
  Blynk.begin(auth, ssid, pass);
}

void loop()
{
  Blynk.run();
}

You have to change AUTH. Use the AUTH code / token that was sent to you during Blynk registration. Then you have to change the WLAN credentials. Use the name of your network (SSID) and its password. (Depending on the maximum voltage of the vibration motor you have to adjust i, j and k e.g. for a 1.5V motor divide the variables by 3.

Configure the Blynk app

Create a new project and choose this device: ESP8266. Now add user interface elements – they are called widgets -to control the BI2. You can move and resize, add and delete each widget. Press on the widget to enter parameters like GPIO port etc. The app could look like that but you may position the widgets as you like. [The pitch, roll, yaw text fields can be omitted. They are introduced later.]

Add the following Widgets

Press the “+” button and add this widget:

zeRGBA: With this tool you can control the WS2821B LED

Choose select pin V0 = Virtual Pin 0.

Choose Merge.

Send on release: off

Add Sliders

Press the “+” button and add two sliders, one for each motor.

1st silder: Select Digital Pin 12 (PWM)

2nd slider:  Select Digital Pin 13 (PWM)

Add Button

Press the “+” button and add the button widget. Select pin digital – gp0. Set mode to “switch”.

Start the app

Therefore press the Run (or play) button (top left).

 

Done!

Questions? Reply to this post, via wordpress or to jacardano@gmail.co

 

Basic Node for the Internet of Sex Toys – part 3: software

This the third part of the tutorial which has the following parts:

part 1: Basic Node for the Internet of Sex Toys

part 2: Molding the Basic Node

part 3: Software for the Basic Node

For the basic node a simple software realizes all features like Mqtt communication, Web server, basic web user interface, reading data from the accelerometer. Please use the code at github and send request over github. Now the imported parts of the code are explained.

To communicate with the IOT Mqtt is used (read more here). This is a fast protocol for data transmission. Therefore we need a Mqtt server. You can install one on your local computer or use a cloud-based Mqtt server. We use the free CloudMqtt. The following variables must be initiated with the data  of your server. Please get your own account at CloudMqtt or use my server (but don’t spam it, please). Please remember: Transmission is not encrypted, everybody can read it.

const char* mqtt_server = "m12.cloudmqtt.com";
uint16_t mqtt_port = 15376;
const char* mqtt_user = "nvcuumkf";
const char* mqtt_password = "C-X6glwisHOP";

We have now  7 different modes. In each mode the basic node behaves different.

const int offMode = 0;
const int maxMode = 1;
const int sinusMode = 2;
const int motionMode = 3;
const int constantMode = 4;
const int listenMode = 5;
const int listenAndMotionMode = 6;

In off mode the basic node is off, in max mode the vibration is maximum. In sinus mode the vibration speed is altered according to a sinus curve.

Web user interface of the basic node

In motion mode the vibration changes according to the movement of the basic node. When moved fast the speed goes up, when moved slowly or movement stops, the speed goes down. In constant mode any vibration speed can be set to any strength. This feature is only available by Mqtt messages eg. from the IOT node-RED user interface. The listen mode is still experimental. In this mode the speed will be changed by OTHER basic nodes. Finally in the listenAndMotionMode the speed is changed by movements of the basic node and by other nodes. This feature was already available with the body interaction 1 development board as standard mode!

The basic node starts a web server (see image). A web page is generated which build up the user interface. There are buttons for every mode. In addition the speed and the battery power is displayed. This is done in this function:

void generateWebpage() {

The next lengthy procedure is this:

void mqttCallback(char* topic, byte* payload, unsigned int length) {

This is a call back function which is executed whenever a Mqtt message comes in. It parses the Mqtt message which is in the popular JSON format. The commands which are communicated within JSON are explained here. In principle there is a command for every mode, when the command “set mode to off” is send the mode is set to offMode.

In the setup() part of the code you will find a lot of lines like that:

httpServer.on("/MOTOR=MAX", []() {

They corresponds to the generateWebpage() function. When say the max button on the web page is pressed than the affiliated httpServer function is executed. So for every button on the webpage you need a corresponding httpServer function to implement the functionality. In this case (MOTOR=MAX) the mode is set to the constant speed maxMode.

Finally in the loop section of the code the following functions are implemented:

  • reading the accelerometer data
  • change the vibration motor speed according to the mode
  • generate a new JSON message which is send out via Mqtt
  • do the timing

Not mentioned is the OTA (over the air update) function, which is integrated in the code.

Node-RED

For controlling the toy via the internet you can use node-Red. You can find the code at github via this link.

The flow is explained here and here.

 

OpenSCAD as sex toy generator

balls_scadOpenSCAD is a free software tool for creating 3d objects. But it is different from other CAD tools like Tinkercad or Freecad. Instead of using the mouse to select and modify 3d objects you have to use a description language. Making a 3d object in OpenSCAD is a bit like programming. For creating a sphere you just have to type sphere(r=10); where r is the radius of the sphere. For creating a cube or a cylinder just type in the appropriate command. When done select compile from the menu and you’re object will be displayed.

Just download the OpenSCAD software, install the tool and try out a command. You can copy and paste the dildo generator source code (at the end of this blog post) and try to change the parameters. Another option is to use the customizer module of the Thingiverse platform.

Brief Intro to OpenSCAD

openscadintro If you want to create a sphere not in the origin but somewhere else you have to shift the object using the translate command. For creating the second smaller sphere use

translate([30,0,0]) sphere(r=10);

The translate command moves the sphere objects on the x-axis by 30 points.

To visualize the form use the design menu and select “compile” or “compile and render”. Rendering takes some time (up to some minutes) but it will give you a correct preview of your form.

To build more complex objects you have to use the union or difference command. The union command puts simple objects together. With the difference command you can cut out something e.g. to make a ring. openscadintro2 You can download a STL-file (select “export STL” from the menu) and print out the form with a 3d printer.

OpenScad can be used to create sex toys as shown by Mr O. He used OpenScad to create basic building blocks for sex toys which can be combined and changed in size. Moreover with OpenScad you can make generative designs. For example you can make a generative dildo which can be individualized by changing parameters like height, length etc.

Generative Dildo Project

Let us create the “balls” dildo which is introduced in Silicone overmolded vibrator – balls revisited and Update for “balls revisted” – silicone molded vibrator.

molded-querThe dildo consists of 6 forms:

  • three spheres with individual radius
  • a base which is made of cylinders
  • and an iterative use of circles to make the upper top of the base to be round

We use the module command to encapsulate the commands for creating the dildo. A module is very similar to functions or procedures in other programming languages, but they do not return a value. They just execute the commands in the module. The definition of the module starts with its parameters.

module base (r_bottom,height,rounding,connector_radius,ball_distance, c1,c2,c3) {
  ...commands for creating the dildo...
}

c1, c2 and c3 are the radius of the spheres. r_bottom is the radius of the base part and height the height if the base parts.

balls_scad

Now you can produce different versions of the ball motive by entering different parameters when you call the module base. With the following parameters the form at the left side will be generated:

base(50,60,10,10,30,15,25,35);

 

 

ball_scad_alt_parametersThis form will be made when using the following parameters:

base(60,30,10,10,30,20,35,45);

 

 

 

Make your own generative sex toy design and publish it

The Thingiverse platform is able to create objects made with OpenSCAD. Just upload the SCAD-file to Thingiverse using the customizer option. Now you can change the parameters within Thingiverse and generate a customized STL-file for 3d printing. Try it out with the Thingiverse customizer (as long as nobody complains…).

Download the SCAD file source code here: form_only

Or copy & paste the following SCAD code to generate the “balls” sex toy:

// bodyinteraction toy form

// radius of bottom part
r_bottom=50; // [50:5:80] 
// height of bottom part
h_bottom=60; // [10:5:80] 
// top rounding of bottom part
rounding=10; // [10:5:20]
// radius of ball 1 
r_ball1=35; // [15:5:50] 
// radius of ball 2
r_ball2=25; // [15:5:50] 
//radius of ball 3 
r_ball3=20; // [15:5:50] 
// radius of connecting cylinders
connector_radius=10; // [10:2:20]
// distance between balls and bottom part
ball_distance=30; // [10:2:40]


base(r_bottom,h_bottom,rounding,connector_radius,ball_distance,r_ball1,r_ball2,r_ball3);

module base (r_bottom,height,rounding,connector_radius,ball_distance, c1,c2,c3) {
 union () {
 // connector
 color("white")cylinder(h=height+2*ball_distance+c1*2+c2*2+c3*2,r=connector_radius,$fn=60);
 //base
 color("DarkSlateBlue") cylinder (h=height-0,r=r_bottom-rounding,$fn=60);
 color("MediumSlateBlue")cylinder (h=height-rounding,r=r_bottom,$fn=60);
 translate([0,0,height-rounding]) color("SlateBlue") rotate_extrude() 
 translate([r_bottom-rounding,0,0]) circle(r=rounding,$fn=120);
 // circle (ball) 1, 2 and 3
 translate([0,0,height+ball_distance+c1]) color("Indigo")sphere(r=c1,center=true,$fn=60);
 translate([0,0,height+2*ball_distance+2*c1+c2]) color("Violet")sphere(r=c2,center=true,$fn=60);
 translate([0,0,height+3*ball_distance+2*c1+2*c2+c3]) color("Purple")sphere(r=c3,center=true,$fn=60);
 }
}

 

Next part: Silicone sex toy mold generator with OpenSCAD

Internet of (sex) things – part 4: Building a sex toy dashboard with Node-RED

In the fourth part of the tutorial we explain the development of a dashboard for our sex toy.

The series has 4 parts:

part 1: Exploring the internet of (sex) things

part 2: MQTT messages

part 3: Node-RED

part 4: Building a sex toy dashboard with Node-RED

The dashboard is used to visualize certain data eg. the speed of the vibration motor and the movements of the vibrator. In addition it can have some control elements eg. for changing the vibration pattern.

ui-all

The window above is called a tab. You can have multiple tabs. The Motor, Data, Status and Controls – windows are called groups. The Controls – group has buttons to set the motor mode. In addition there is a slider which will set the motor to a constant speed. And there is an on/off button for the LED.

You have to install the Node-RED dashboard. Therefore you need at least version 0.14 of Node-RED. At the time this text was written the standard Node-RED installation is version 0.13 which is not sufficient for the dashboard.

Therefore check your Node-RED version. If it is equal or better than 0.14, skip this step:

  • Download & unzip the latest version from github (eg. https://github.com/node-red/node-red/releases/tag/0.15.2).
  • Now change to newly created directory eg “node-red-0.15.2”
  • On Windows: Start a command shell in adminstration mode
  • Execute “npm install” to install Node-RED.

If your Node-RED version is 0.14 or better install the dashboard:

Some  remarks:

Let’s start and have a look at the new Node-RED interface: On the left side you will find the dashboard or user interface nodes. And on the right side there is new dashboard – tab. It contains all dashboard nodes which are used in the flow ordered hierarchical.

node-red-ui

But where is the dashboard? Just open your browser and go to one of the URLs:

http://localhost:1880/ui/#/0 or
http://127.0.0.1:1880/ui/#/0

How can I get all the flows? You can download all flows here: bi-ui-node-red. Unzip the file and you will get a text file. Open the text file in an editor. Select the text and copy it to the clipboard.

Now we will explain two flows in detail.

Now go the Node-RED window, open the menu (it is on the left top side), select Import -> Clipboard.import1

A new window will open where you can insert the text (CTRL+V). Then press the Import-button.

import2

nodemcu prototype breadboardThe Arduino sketch was updated for the dashboard. Please download the Arduino sketch from here: iost-part4-v12. Unzip the file. Compile and upload to your hardware (see part 1 of the tutorial).

 

In the first flow we will receive some vibration motor sex toy data which are sent by the MQTT protocol. We will display the data using a gauge and a graph element.

Let’ start with the MQTT input node. There is nothing new. Just connect to the MQTT server and subscribe the topic “BIoutTopic2” – which the sex toy uses to send out data.mqtt-in

Now add the function node “JSON” which will parse the incoming message and places the result in “payload”.

But we want to know the motor speed only. Therefore we need a function node which passes the vibration motor speed as payload and deletes all other data. Please use the following JavaScript code:

get-motor-speed-function-node

To display the speed we need to more nodes. The gauge node gauge-node displays the actual speed. Connect the gauge node with the function node. You can add the range – the minimum and maximum value (0 and 1023).motor-gauge

 

Now add a chart node chart-nodeand connect it with the function node, too.

 

Next we want the chart node and the gauge node to be together as shown in the next image.

motor

We have to make a group and put both nodes into the group. Have a look on the dashboard at the right side. Make a new group and move the gauge and chart node below the group called “Motor”.

dashboard-top

slider-nodeNow we explain the second flow. It is used to send commands to the sex toy. We will use a slider to control the speed. But there is one problem: the slider should display the actual speed of the vibration motor. Therefore we manipulate the slider. To display the actual motor speed we have to move the slider appropriate to the actual speed. The slider will be part of the control group:

controls

Now get the slider node and edit the node as follows:

slider-motor-speed

Then connect the node with the “get motor speed” function which was introduced in the first flow.

construct-json-motor-speed-function-nodeFinally comes the trick part. Get a new function node and connect it with the slider. This node will construct the JSON message which will be sent to the sex toy using MQTT. The JavaScript code of the function node is as follows:

function-node-for-constructing-json-speed-command

msg.payload={messageType:"execute", actuator:"motor1",
             actuatorMode:"constant", actuatorValue:msg.payload}
msg.topic = "BIinTopic";
return msg;

Now connect the function node with a new MQTT output node. Leave the topic empty as it will be passed from the input nodes:

mqtt-out-message-to-bi

Using Node-RED with the Node-RED dashboard we are able to make a user interface for our sex toy(s). We could easily display the motion of the sex toy as well as the vibration motor speed. You could argue that we had a (very simple) user interface already in part 1 of the tutorial, without having to use MQTT, Node-RED and the Node-RED dashboard. That’s true. But imagine you have several sex toys and want to control them. You could easily add a tab in Node-RED for each sex toy. Or you could build more sophisticated flows incorporating several sex toy. Why not interconnecting the vibrating necklace with a penis ring and one of the plugs or dildos?

There are a lot of flows and nodes already available at http://flows.nodered.org/. (Of course not in the sex toy domain)

Why not play music for a given sex toy vibrator mode? Or control the sex toy using another IOT device…

%d bloggers like this: