Category: sextech

USB powered charging station for the silicone molded vibrator

charging-station-in-action-with-body-interaction-vibrator-so-much-balls-smallWe made a DIY silicone molded vibrator (see here, here and here) using the Arduino compatible body interaction vibrator development board and a wireless charging module. Now we need a charging station where you can put your vibrator for battery charging.

We need a simple box for the wireless charging sender (transmitter) module and the coil. In addition we need a USB cable which we will cut though and connect to the charging module.

It is important to keep the distance between sender and receiver coil as small as possible. The larger the distance is the less power will be transmitted. Therefore the plate where you put the vibrator must be very thin. There are different modules available.

 

What do you need?

  • A USB cable
  • Wireless charging sender (transmitter) eg. from Seeed Studio, 5V input. The sender (transmitter) will be placed in the charging station. The receiver module will be part of the vibrator. There are different modules available. Look for a 5V input module.seeedwirelesscharging

Instructions:

A. Print out part A and B. Download STL files (zip file)

charging_station_02_final

 

B. Cut a USB cable. Plug the cable through the hole of form B.

C. Now connect the USB wires with the sender module. Solder the red wire to the (+) pad on the wireless charging sender. Solder the black wire to the (-) pad.

charging-cable-through-and-USB-cable-soldering-to-board

D. Glue the sender board on the bottom of the red form. Put some glue on the cable to fix it. We used hot glue.

charging-board-and-cable-glued

E. Now glue the black form and the sender coil together. We used simple “UHU”-like glue. If the distance between coil and form is too large the charging could be rather slow. So don’t use too much glue.

charging-coil-glued

F. Now put together both parts. Again we used a simple glue.

charging-station-complet-with-USB-cable

G. Insert the USB connector to your PC or any other source. Now the vibrator should be charged which is indicated by an orange LED.

charging-station-in-action-with-body-interaction-vibrator-so-much-ballsReady! Have fun with your collection of wireless DIY Arduino-compatible vibrators.

 

Download STL files (zip file)

All files at Thingiverse: http://www.thingiverse.com/thing:1488428

Tinker and share with Tinkercad:

Part A https://tinkercad.com/things/ijyPmLD1B9e

Part B https://tinkercad.com/things/emWnXUkiH1J

New fusion 3d printed and silicone molded vibrator

fusion tinkercadThis is the initial design. The round curved form will be in silicone with vibration motor within (vibration motor not shown on sketch). The red part is 3d printed. It is the enclosure for the body interaction vibrator development board and LiPo battery. You can plug-in the Micro USB connector for battery charging. In addition there is an on/off switch e.g. for travelling.

Connecting a servo motor – move your vibrator

The body interaction vibrator development board can be connected with additional sensors and actuators. In this post we show how to connect a servo motor. A servo motor can adjust its shaft to be positioned in varies angles. We use a inexpensive SG92R servo which can be positioned in any position between 0° and 180°.

servo-birdNow we can build eg. a linear actuator which could be useful for sex toys. If you have a 3d printer you can build your linear actuator and fix the servo motor. You can download the design here.

servo-from-top

Connecting servo motor and body interaction vibrator development board

The servo motor has 3 wires: ground (-) (black or brown wire), power (+) (red wire) and control (yellow or orange).

servo connection 2pcb-bottomConnect the (+) wire to the body interaction board. You can use the pad on the bottom side as shown on the image.

servo pcb layoutservo-pcb-from-topThen turn the board around to the top side. Now you can solder the black wire to the “GND” (ground) pad. Then solder the orange or yellow control wire to the leftmost pad “PA1”.

Programming the servo motor

The standard Arduino servo library will not work on the body interaction board. But you can use the TinyServo library. Download the library as *.zip file  here or here and read the forum post.

Go into the Arduino library manager and include the ZIP file. Please restart Arduino.

The following script attaches the servo motor and shows how to control it.

// servo control with the body interaction development board using the TinyServo library
// -- adaption of the demo script by
// tylernt@gmail.com's ATTiny Hardware Timer Assisted Servo Library v1.0 20-Nov-13
// http://forum.arduino.cc/index.php?action=dlattach;topic=198337.0;attach=71790

#include <TinyServo.h>
const byte SERVOS = 1; // number of servos is 1
const byte servoPin[SERVOS] = { 7 }; // servo is connected to PA1 which is pin 7
#define SERVO 0 // our servo is given the name "SERVO"

void setup() {
  setupServos();
}

void loop() {
  delay(1000);
  moveServo(SERVO, 180); // move servo to 180°
  delay(1000);
  moveServo(SERVO, 0); // move servo to 0
  delay(1000);
  for (int i = 0; i <= 180; i++) {
    moveServo(SERVO, i); // move servo from 0° to 180° in 1° steps
    delay(50);
  }
  moveServo(SERVO, 0); // move servo to 0°
  delay(1000);
}

 

 

Silicone overmolded vibrator – balls revisited

molded-quermolded-with-ueberh-querBuilding your own silicone molded vibrator becomes now easier. We already have presented 3d printed forms for building your personal vibrator (massage wand, wireless charged vibrator). The vibrator uses the body interaction vibrator development board. The body interaction board has a Arduino compatible microcontroller, vibration strength control by motion, a vibration motor and a rechargeable battery.

 

balls_revisited_3_inlay_part_bWhat is new? The electronics including battery are in the base of the vibrator. We developed a 3d printed enclosure for the electronics. This has several benefits: The assembling of the electronics and the molding itself is easier as everything is fixed within the enclosure. And it is more safe as the enclosure shields the electronics from the environment (and vice versa). In addition we used a different charging module from Seeed Studio. The input voltage is only 5V. Now you can connect the charging module with a USB connector and don’t need another power supply. (Look here for an explanation of wireless charging sender and receiver.)

overmolded-vibration-motor

Another improvement is the placing of the vibration motor. The vibration motor can now be placed in the center of the vibrator and it different heights. Just were you need the power.

balls_revisited_3_inlay_part_aFinally the mounting is improved. The mounting holds the enclosure when it is inserted into the form.

balls_revisited_3_finalThe mounting (together with the enclosure with the electronics) is inserted into the form. The form consists of two parts which must be fastened together by tinker wire. It is a variation of the ball theme.

We present a step by step procedure for tinkering the vibrator. You need:

  • 3d printed form (molding form, 2 parts)
  • 3d printed enclosure
  • 3d printed mounting
  • body interaction vibrator development board
  • silicone with a high shore A value (eg. shore A 45 which is quiet hard but still flexible), approx. 100 ml
  • wireless charging module eg. from Seeed studio
  • soldering station, (hot) glue

Step by step procedure:

A. Print out all forms. You can download the forms from Thingiverse.

wireless-charging-sender-and-receiver-line-pf

B. Connect the wireless charging module to the body interaction vibrator development board.

B.1 You have to solder a wire connecting (-) on the wireless charging module and GND on the body interaction board.

B.2 Now comes the tricky part. You have to connect (+) from the charging module with the body interaction board. Solder a wire at (+) of the charging module. But where do you solder the wire on the body interaction board? Unfortunately the wireless charging option was not taken into consideration during the development of the board. So there is no appropriate connection on the board.

circuitThe best solution is to unsolder the USB connector and connect to + of the USB connection. The easiest way to unsolder the surface mounted USB connector is done with a hot air soldering station.  Alternatively you can solder the wire directly to the MAX1555 module – this solution is presented here. In any case: Be careful not to break the tiny pads connecting pcb and USB connector.

B.3 Connect the sender module with a 5V power supply. You can use a USB cable, dismantle the cable and connect the black and red wires.

inlay-with-coil

C. Place the receiver charging coil on top of the enclosure. The diameter of the top side is a bit larger than the diameter of the bottom side. Use some glue to fix the coil. Don’t fix the mounting now. It is easier to do it later (step E).

enclosure

D. Put the electronics into the enclosure: Begin with the body interaction board. The RFM12b is quite large so place it at an outer position. Then insert carefully the LiPo battery. Don’t force it! The plugs for the battery and the motor could break. If you have done so insert the tiny wireless charging receiver board. At the end fix the wires of the vibration motor in the middle of the enclosure.

E. Connect the mounting with the enclosure. There are 2 holes provided where the mounting fits into the enclosure. Use some glue to stick together both parts. (see picture above step C).

 

form-unfilled-with-inlay

F. Put together both parts of the molding form. Use tinkering wire to attach both parts tight together. Then insert the enclosure into the form. Check the wireless charging function. The yellow LED must be on when you place the charging coil over the receiver coil.

molded-form

G. Now poor silicone into the molding. We use Shore A 45 silicone which is rather hard. The silicone has to dry for some hours or days. Read the instructions of your silicone provider.

opening-form

H. When the silicone is hard, you can remove the tinkering wire. Then carefully remove the form.

form-removedform-molded-top-down

I. Remove the overhang.

wireless-chargin-test

J. Test the wireless charging. The orange LED must be on when both coils are near together.

molded-bottom IMG_20160303_184830

K. Remove the mounting.

 

Design your own forms using Tinkercad. Start now and share!

Old versions of the enclosure:Enclosure & mounting togther, Enclosure , Mounting

Download the STL files for 3d printing from Thingiverse.

Update 2016/03/12: Added image of circuits showing where to solder the wireless charging module.

Update 2016/04/05 redesign of mounting and enclosure due to different versions of the wireless charging receiver coil

Open source dildo the MOD is cancelled

modopensourceComingle – the only open source sex toy company so far –  announced the cancellation of the MOD. The Mod is an open source hardware dildo based on the Arduino platform. In their Indiegogo campaign they gathered 60000$ to produce a dildo made of silicone. The reason among others are patent trolls Comingle says. Read hear and  here about the background of the proclaimed patent infringements. These are bad news especially as Comingle is the only sex toy company based on open source software and hardware. In addition they were active (or maybe part of) the US DIY and Maker scene – eg they offered free workshops for everyone.

20150112132005-Mod-DiagramYou can still find a lot of great tutorials about tinkering dildos, programming the MOD, interfacing with Nunchucks and a lot of more real innovative ideas on the Comingle website – in some aspects much more advanced than anything available on the commercial market. Hopefully they will continue to produce the Dilduino development board – look here and here for a review.

Another interesting aspect is the crowdfunding of sex toys – some companies were quiet successful:

http://motherboard.vice.com/read/what-happened-to-the-crowdfunded-sex-toy-revolution

If you are interested in this topic, look at metafetisch – the best source for sex tech state of the art:

https://www.metafetish.com/

Vibrating 3d Printed Necklace

necklace-frontThere are a lot of sensible areas of the body which are also erogenous zones (see Wikipedia). The neck is one of them. Stimulation can be achieved eg. by licking and kissing. The stimulation can be quite strong. So why not try to stimulate your neck with vibration? We think it works.

Think of an artistic designed necklace or collar with a vibration function. The vibration will be turned on when you move and gets more intense when you shake our head eg. while dancing. Or the vibration function will be turned on remotely by your friend.

necklace tinkercadBody interaction has made a 3d design for a vibrating necklace. It can be secured by a solid clip closure at the back of the neck. At this place the vibration motor is positioned which gives an intense vibration especially at the back of the neck but also at the whole neck.

closure-back-2

 

necklace-circuitsThe body interaction vibrator development board is inserted into the collar. It controls the vibration motor. The more you move the more it vibrates. There is also place for the battery. Wires and boards can be hidden. Unhidden it has a scifi look-alike.

 

 

 

 

closure-topIn the front there is a solid but easy to close hook closure.

 

 

 

 

 

 

Download 3d files from Thingiverse and print it.

Get the vibrating electronics from Tindie.

Edit and design your own with Tinkercad https://tinkercad.com/things/8stCwczMAkp

necklace-bird

French article about comingle, master-beta kit and bodyinteraction

Tu sais où tu peux le mettre, ton Arduino ?

Do you know where you can put your Arduino? –  Francois Mocq reports about three Arduino vibrator projects: comingle, master-beta kit and body interaction. Even more interesting he queries whether Arduino or Raspberry Pi is the right platform.

raspberry_pi_logo_rgb_552x650-212x250Raspberry Pi offers much more computing power and connectivity, eg. you could add a camera, do video processing and add more hardware.

On the other hand programming can be more complex and it may take more time to run you first script.

 

And there are more platforms out there like the very cheap ESP 8266 module with the NodeMCU software. The ESP8266 can connect directly with the internet via wi-fi.

 

Follow the discussion

%d bloggers like this: