Tag: Blynk

Controlling two BI2 with Blynk

Controlling more than one body interaction 2 boards is very easy.

At first go to project settings in the Blynk app, go to devices and add a new device.

Then create a new device and press Email. You will get an Email with the auth token.

Add slider widget for the motor and another ZEGBRA widget for controlling the LED. For LED select a new virtual pin, e.g. V10.

You can start with this ready made app:

It should look like this:

 

Then reuse  the code from this blog post.

Change the following:

  • fill-in the auth token which you got per Email
  • change the name of the virtual pin V0 (for the LED) to e.g. V10 (the same name as in the Blynk app)

 

That’s it!

 

Sending motion data to the Blynk app (part 2 of the Blynk tutorial)

In the first blog post we explained the basics of controlling the body interaction 2 (BI2) vibrator development board using the concept of  (virtual) pins. This time we want to send data from the BI2 board to the Blynk app. The BI2 has the MPU-9250 9DoF (9 Degrees of Freedom) IMU (Inertial Measurement Unit) sensor on board. This sensor is a combination of an accelerometer, gyroscope and magnetometer. Especially the accelerometer is important for motion detection. This could be used for controlling the vibrator as show with the body interaction 1 (BI1).

For measuring the motion data we use the asukiaa library. Please search and install the library in the Arduino library manager.

In the program code the library must be included and a MPU9250 sensor object must be defined. Finally we need several variables of the type float.

#include <MPU9250_asukiaaa.h>
MPU9250 mySensor;
float aX, aY, aZ, mDirection, pitch, roll, yaw;

In the setup part of the program we need to tell the MPU9250 how it is connected to the ESP8266 microcontroller. [The MPU9250 IMU is connected by the I2C bus to the ESP8266 microcontroller: the sda pin of the IMU is connected to pin 4, the scl pin to pin 5. The connection between MPU9250 and ESP8266 is managed with the standard Wire library.]

For using the accelerometer and magnetometer we have to initialize the sensor with a begiAccel() call to the IMU library.

Wire.begin(4, 5); //sda, scl
mySensor.setWire(&Wire);
mySensor.beginAccel();
mySensor.beginMag();

We have to tell the program how often data is sent to the app. Therefore we need an important concept in microcontroller programming:

Timer

With the help of the timer we can tell the microcontroller to do a given tasks again and again e.g. after 1000 microsecond. You cannot use the delay function to pass time as this would interrupt the important call to the Blynk.run(); function which is located in the loop part of the program.

First we have to define an object of type Timer.

BlynkTimer timer;

In the setup part we have to say how often what the timer has to do. in this example the timer will call the function myTimerEvent every 1000 microsecond.

timer.setInterval(1000L, myTimerEvent);

In the loop part of the program we have to call the timer to keep things going:

timer.run(); // Initiates BlynkTimer

Now we need the function myTimerEvent what has to be done every 1000 seconds.

void myTimerEvent()
{
  // here add was has to be done
}

First we have to update the sensors (accelUpdate, magUpdate). Then we read out the acceleration data in the X, Y and direction. You can already use this data but they are hard to catch. Therefore we can calculate the pitch, roll and yaw. These are angles from -180° to +180°. The calculation is complicated and I don’t understand it. But with the given formulas you get a very rough approximation which makes the data quite accessible.

void myTimerEvent() {
  mySensor.accelUpdate();
  aX = mySensor.accelX();
  aY = mySensor.accelY();
  aZ = mySensor.accelZ();

  // calculate pitch, roll, yaw (raw approximation)
  float pitch = 180 * atan (aX/sqrt(aY*aY + aZ*aZ))/M_PI;
  float roll = 180 * atan (aY/sqrt(aX*aX + aZ*aZ))/M_PI;
  float yaw = 180 * atan (aZ/sqrt(aX*aX + aZ*aZ))/M_PI;

  // read gyroscope update
  mySensor.magUpdate();
  mDirection = mySensor.magHorizDirection();
}

Finally we send the data back to the Blynk app. Now we use the virtual pins. For the variables pitch we  use virtual pin 2 (V2), for roll V3, for yaw V4 and for mDirection V5. We have to add the following line to the myTimerEvent function.

void myTimerEvent() {
  // send data to app via virtual ports, e.g. virtual pin V2 is set to pitch
  Blynk.virtualWrite(V2, pitch);
  Blynk.virtualWrite(V3, roll);
  Blynk.virtualWrite(V4, yaw);
  Blynk.virtualWrite(V5, mDirection);
}

Now the data are continously sent to the Blynk app. To visualize the data we add the widget SuperChart.

For each variable we have to define the input (virtual) pin. For pitch we use the virtual pin V2. In addition we define the color and style of the graph and more.

 

Finally the super graph shows us the date from the accelerometer which are updated every second.

First part of the tutorial (setup Arduino, setup Blynk, LED and motor control) is here

Here is the complete code:

 

/*************************************************************
bodyinteraction.org
sample program for reading MPU data, setting LED color and motor speed
*/
#define BLYNK_PRINT Serial
// include this library in the Arduino library manager
#include "FastLED.h"

// How many leds in your strip?
#define NUM_LEDS 1
// LED data pin is connected to pin?
#define DATA_PIN 14

// Define the array of leds
CRGB leds[NUM_LEDS];
int wave;

// include this library in the Arduino library manager
#include <MPU9250_asukiaaa.h>
MPU9250 mySensor;
float aX, aY, aZ, mDirection, pitch, roll, yaw;

#include <ESP8266WiFi.h>
#include <BlynkSimpleEsp8266.h>

// You should get Auth Token in the Blynk App.
// Go to the Project Settings (nut icon).
char auth[] = "Your Auth Token XXXXXXXXXX";

// Your WiFi credentials.
char ssid[] = "YOUR SSID   XXXXXXXXXXXXXX";
char pass[] = "YOUR Password XXXXXXXXXXXX";
BlynkTimer timer;

void myTimerEvent()
{
  // read acceleration data
  mySensor.accelUpdate();
  aX = mySensor.accelX();
  aY = mySensor.accelY();
  aZ = mySensor.accelZ();
  // read gyroscope update
  mySensor.magUpdate();
  mDirection = mySensor.magHorizDirection();
  // calculate pitch, roll, yaw (raw approximation)
  float pitch = 180 * atan (aX/sqrt(aY*aY + aZ*aZ))/M_PI;
  float roll = 180 * atan (aY/sqrt(aX*aX + aZ*aZ))/M_PI;
  float yaw = 180 * atan (aZ/sqrt(aX*aX + aZ*aZ))/M_PI;
  // send data to app via virtual ports, e.g. virtual pin V2 is set to pitch
  Blynk.virtualWrite(V2, pitch);
  Blynk.virtualWrite(V3, roll);
  Blynk.virtualWrite(V4, yaw);
  Blynk.virtualWrite(V5, mDirection);
}

BLYNK_WRITE(V0) // set RGB color values which are transmitted from the app as V0 (virtual pin 0)
{ 
  int i = param[0].asInt();
  int j = param[1].asInt();
  int k = param[2].asInt();
  leds[0].setRGB(j,i,k);
  FastLED.show();
}

void setup()
{
  Serial.begin(115200);
  FastLED.addLeds<WS2812B, DATA_PIN, RGB>(leds, NUM_LEDS);

  Wire.begin(4, 5); //sda, scl
  mySensor.setWire(&Wire);
  mySensor.beginAccel();
  mySensor.beginMag();

  Blynk.begin(auth, ssid, pass);
  timer.setInterval(1000L, myTimerEvent);
}

void loop()
{
  Blynk.run();
  timer.run(); // Initiates BlynkTimer
}

 

Please feel free to comment or write to jacardano@gmail.com

Blynk: Controlling BI2 from the smartphone

Readers ask me for an easy way to control the body interaction vibrator development board. Without or with limited  programming knowledge, without complicated Internet of thing technology, like the visual programming tool NODERED or the MQTT protocol and server.

That’s what Blynk is for. Started in 2016 as a kickstarter  campaign, they have built a tool which hides a lot of the complexity of the Internet of Things. Blynk consists of the following parts:

Blynk app. With this app you can build a User Interface in just a few minutes. You have all the usual elements like switches, slider,  graphs and much more for controlling IOT devices.

Blynk Server / Cloud is responsible for the communications between the smart phone and IOT devices. There is nothing to do, everything works in the background

IOT devices library: So far everything is very simple. But at the end you have to program your IOT device – the body interaction 2 board for example. They support a great number of boards. For this they created the blynk  library – with the library you need only some lines of code which must be uploaded to the board. Even when you change the user interface the code can stay the same. At least for simple changes. They offer a code generator where you code for your board and use case is generated automatically.

You find a lot of information in the Internet about the pros and cons. In short: It is easy compared to other tools, but if you want to implement your own algorithms programming knowledge is needed. Blynk limits the number of free User Interface elements. If you need more you have to pay  a small fee.

 

Here is short tutorial to run you BI2 with Blynk. (takes 30 minutes)

Download the Blynk app (Android or iPhone).

Within the Blynk app: Register for Blynk and get AUTHenitfication code.

Upload Arduino

You can download Arduino from the Arduino Website or from the Microsoft Store (Windows only)

 

Add or update the following libraries with the library manager: FastLED and Blynk.

Select Include libraries -> library manager

Search for FastLED and install this library (press install button).

Now search for “Blynk” and install the Blynk software. However Blynk suggests to install the Blynk app manually.

 

Add board definition for the ESP8266

Select Tools -> Board -> Board management

Search for ESP and install “esp8266”

Select Board -> Adafruit Feather

Build a connection between BI2 and your computer.

First download the USB driver from here and install the driver. Connect the BI2 with your computer. After some while windows will notice a new device. Windows will communicate with the board over a COM port (e.g. COM3). If you have any problemes check your USB wire. It must support all lines, not only + and – for charging.

Now go back to Arduino and select Tools -> Port. Select the new COM portcom port arduino

Compile and upload the code to BI2 board

Now copy and paste the following code in a Arduino sketch (use File -> new). Then press the Upload button.

/*************************************************************
Controling the body interaction 2 board with the Blynk app
*/

#define BLYNK_PRINT Serial
#include <ESP8266WiFi.h>
#include <BlynkSimpleEsp8266.h>

// Auth Token infor the Blynk App.
char auth[] = "XXXXXXXXXXXXXXXXXXXXXXXXXXX";

// Your WiFi credentials.
char ssid[] = "XXXXXXXX";
char pass[] = "XXXXXXXX";

// Library for controlling the WS2821B (Neopixel) LED or LED strip
#include "FastLED.h"
#define NUM_LEDS 1 // number of LEDs
#define DATA_PIN 14 // pin for LED
CRGB leds[NUM_LEDS]; // define the array of leds

// This function set the LED color according to the selected RGB values in the app.
// RGB values are controlled in the app with zeRGBa widget
// values are stored in the virtual pin V0
// V0 consists of 3 values for Red, Green, Blue
BLYNK_WRITE(V0) // set LED RGB color values
{
  int i = param[0].asInt();
  int j = param[1].asInt();
  int k = param[2].asInt();
  leds[0].setRGB(j,i,k);
  FastLED.show();
}

void setup()
{
  // init LEDs
  FastLED.addLeds<WS2812B, DATA_PIN, RGB>(leds, NUM_LEDS);

  // connect to Blynk
  Blynk.begin(auth, ssid, pass);
}

void loop()
{
  Blynk.run();
}

You have to change AUTH. Use the AUTH code / token that was sent to you during Blynk registration. Then you have to change the WLAN credentials. Use the name of your network (SSID) and its password. (Depending on the maximum voltage of the vibration motor you have to adjust i, j and k e.g. for a 1.5V motor divide the variables by 3.

Configure the Blynk app

Create a new project and choose this device: ESP8266. Now add user interface elements – they are called widgets -to control the BI2. You can move and resize, add and delete each widget. Press on the widget to enter parameters like GPIO port etc. The app could look like that but you may position the widgets as you like. [The pitch, roll, yaw text fields can be omitted. They are introduced later.]

Add the following Widgets

Press the “+” button and add this widget:

zeRGBA: With this tool you can control the WS2821B LED

Choose select pin V0 = Virtual Pin 0.

Choose Merge.

Send on release: off

Add Sliders

Press the “+” button and add two sliders, one for each motor.

1st silder: Select Digital Pin 12 (PWM)

2nd slider:  Select Digital Pin 13 (PWM)

Add Button

Press the “+” button and add the button widget. Select pin digital – gp0. Set mode to “switch”.

Start the app

Therefore press the Run (or play) button (top left).

 

Done!

Questions? Reply to this post, via wordpress or to jacardano@gmail.co

 

%d bloggers like this: